
Thesis Topic Proposal: Pliant + SDL

Mujtaba Hasni

February 11, 2003

Topic: High-level programming for high-performance multimedia with Pliant + SDL.

Sponsor: Marcus Santos, assistant professor, School of Computer Science Ryerson
University.

Abstract

This document is a proposal for conducting experiments with the Pliant com-
piler and SDL library. It provides a detailed introduction to the two technologies,
and Python/Pygame, which is a similar effort for the Python language that this
project will draw comparisons to. This proposal then defines some objectives for
using the two together. Software and hardware requirements for the project are
also specified.

1 Introduction

High-performance multimedia applications, especially games demand direct access to
the hardware they run on. Also, these applications tend to be very large and thus also
have many bugs.

Games and multimedia applications for the pc platform need to work under many
hardware configurations. Because software cannot be optimized for a particular com-
bination of hardware (with exception to game consoles such as those from Nintendo),
performance is compromised for compatibility. This means developers need to write to
standard APIs such asSDL that provide access to accelerated features of video graphic
adapters, sound cards and input devices, through drivers supporting the API.

Performance is also compromised for stability and high-level programming. C/C++
is usually the highest level programming language that game developers typically use.
Some will use assembler to further optimize code. However, the larger and more low-
level software becomes, the more unstable they become. this is largely due to the higher
bug-rate. A recent trend is to use C/C++ and assembler to write only the code that needs
to execute fast, such as graphics drawing routines, input and audio playback. Games
and multimedia use optimized routines for real-time physics, special effects and fast
frame-rates. Other elements such as user interface, logic, scripting, file management
and data modeling are done in some high-level language. In other words, high-level
languages provide a safe, easy way to ”glue” components and optimized routines to-
gether.

1

Python for example usesPygameto link with the routines in the SDL. Higher-level
languages are either more expressive and require lesser code to do the same things as
lower-level languages do, and/or more simple to use and to understand. High-level
languages are usually very safe and may feature facilities such as garbage collection.
This usually translates to fewer bugs and faster development time. But most popular
high-level languages are interpreted or use a runtime environment, and execute slower
than natively compiled objects.

Pliant however, compiles to native code, existing inside memory. Using native
code to glue the optimized C/C++ routines may yield performances comparable to
software written entirely in C/C++. If so, then Pliant may be a better solution than
Python or any other interpreted high-level language for binding with SDL, creating
stable high-performance games and multimedia applications with shorter development
cycles.

1.1 SDL Overview

SDL, Simple Directmedia Library is an open-source API and library similar to Mi-
crosoft’s DirectX, and is available on a number of platforms. SDL and DirectX re-
solves the issue of performance and compatibility by providing software developers
and driver writers a standard abstract software layer to allow a program to run reliably
and take advantage of the enhanced performance features on infinite number of hard-
ware combinations. SDL comes courtesy of Sam Lantinga. The project is hosted at
http://www.libsdl.org.

SDL is written entirely in C and is a self contained library. SDL has facilities for
the playback of mpeg, wav, and other media formats1. SDL is a popular choice of
Linux developers for making media playback viewers. SDL is most popular however
for creating games on Linux and MacOS. SDL is a library and an API. If there is
a hardware-accelerated feature unavailable or not supported by SDL, it uses built-in,
highly-optimized software routines instead. On Win32 systems, the SDL can act as a
wrapper to DirextX, providing a comfortable C language layer to an otherwise com-
plicated C++/DCOM/Win32 API. SDL can also safely access the Windows GDI for
non-accelerated graphics and standard multimedia interfaces. Currently, SDL is not a
good substitute for DirectX on the Windows platform, specifically because it depends
on directx for access to accelerated features.

Also because SDL library is written entirely in C (and thus have a simple symbol
allocation table), it has many bindings to other languages. Currently, SDL is supported2

by ADA, C# , Eiffel, Erlang, Euphoria, Guile, Java, Lisp, ML, Pascal, Perl, PHP,
Python (Pygame) and Ruby. Notably, Pliant is missing and so making SDL bindings
for Pliant is the topic and focus of this proposal.

1.2 Pliant Overview

Pliant uses a dynamic compiler and a trivial high-level meta-language syntax. The
Pliant environment offers an HTTP server, FTP server, SMTP/POP3 mail services,

1to play media files requires an external codec library of some sort.
2language bindings and project urls at http://www.libSDL.org/languages.php

2

DBS, and the full Pliant OS in 1.4 megabytes compressed, small enough to fit on a
3 1

2 inch floppy disk. The Pliant project is led by its author, Hubert Tonneau.

1.2.1 Pliant 75 Distribution

The current version of the Pliant distribution as of this writing is 75. The Pliant distri-
bution is one of the smallest of its kind available. The distribution provides a suite of
programs and low-level libraries called the Pliant Default Extensive Environment, or
the PDEE.

The PDEE is designed to make Pliant applications, which run on the internet. For
example, the Pliant http server is the official graphical toolkit for Pliant applications.3

Pliant however does have the beginnings of a graphics library, featuring support for
vector graphics – but currently only for X11. The proposed thesis will try to improve
this situation by improving performance and portability by using SDL instead.

The Pliant 75 HTTP server can serve regular HTML documents or its own .page
document format. A .page document is actually a Pliant program that is compiled
and executed when a web-browser requests it. This allows the Pliant HTTP server to
serve dynamic content quickly because the processed page resides in memory. Pliant
completes the internet suite with an FTP and mail server.

Pliant 75 also comes with the fullPliant OS installation. FullPliant is an operat-
ing system built around the Linux kernel and Pliant. Unlike the Linux based systems
widely used today, fullPliant is not a unix type OS. The FullPliant OS works as a layer
on top of the kernel, providing services which are completely written in Pliant. Then on
top of the fullPliant layer is a subset of the debian 2.2 GNU/Linux distribution. This is
not included in Pliant 75, but is downloaded off the internet during installation. Debian
offers the essential software applications than any user-oriented OS demands, such as
web browsers, file managers, etc. This custom debian distribution is a “generic” soft-
ware distribution that will compile and run on any fullPliant system, regardless of the
underlying architecture. There appears however few that are actively using fullPliant.

1.2.2 Pliant Syntax

The Pliant language is designed to be small with new, fundamental features. Even
loop constructs such aswhile andfor are actually routines, written in Pliant. Pliant
has facilities for meta programming, allowing extensions to add new features to the
language itself.

This is in stark contrast to languages like Perl, which have many features such as
file i/o, regular expressions, hashing and list manipulation built into the syntax. The
Pliant project intends to implement many features found in other high-level languages
to Pliant, though only through sets of external modules.

Like Python, Pliant’s syntax is whitespace delimited. Statements are terminated by
newlines (or semicolons) and blocks of code are indented. This makes Pliant code ap-
pear pleasant in short programs, but more importantly uniform; given a algorithm, any
two programmers will produce structurally identical code. However also like Python,
long Pliant program code can appear ugly – especially if blocks are nested to deeply.

3http://Pliant.cx/Pliantdocs/babel/universal/Pliant/welcome/whatisit.html

3

1.2.3 Pliant Dynamic Compiler

Using a dynamic compiler, Pliant doesn’t generate object or executable files. Instead,
Pliant compiles a source file directly into low-level instructions in memory. Pliant can
also further compile programs in execution time, similar to using an “eval” statement
found in interpreted languages. Pliant supports a form caching by “precompiling” the
source code to speed up compilation time for frequently used programs. This is done
by dumping parts of the memory core onto file. Like Java’s JIT (Just In Time) compiler,
code is transformed into native code in one initial process, but unlike Java, Pliant does
not make use of a virtual runtime environment. And unlike Python, Pliant is not use an
interpreter.

In a traditional static compiler, source is first compiled to assembler instructions.
Then the assembler code is assembled into object code. The linker then links all rele-
vant object code to produce an executable file. When this file is executed, the program
code is finally loaded into memory and ready to run. Pliant appears to skip all steps
between, transforming source to executing program code. Pliant’s dynamic compiler
goes even further away from this process, allowing parts of the program code to be
added, removed or recompiled in memory – without having to reload the modified
program core entirely.

1.2.4 Pliant as High-Level Language

Pliant is one of the many high-level languages to emerge in recent years, due in part by
the increasing performance of commodity pc hardware. These modern language utilize
the processing power to provide facilities such as garbage collection and virtual runtime
environments. Similarly, Pliant chooses to utilize extra overhead processing to compile
programs at execution time. On current systems, Pliant’s fast and lightweight dynamic
compiler doesn’t present much of a performance hit, especially with precompiling.
Once the Pliant program code is in memory, it executes at native compiled speeds.

One of the goals of Pliant and other high-level languages is to reduce the number
of bugs and errors in programs. Pliant, along with its standard support libraries can
express most programs in fewer statements than C/C++ or assembler can. Smaller
code is easier to isolate and debug. Pliant syntax is easier to read and understand;
C/C++ can easily lead to obfuscated code, especially if the code makes abuses to the
preprocessor.

Another goal of high-level languages is to provide a “safe” environment for pro-
grams. Facilities such as garbage collection and exception handling take care of care-
less mistakes or unexpected errors, without letting programs take the system down.

Pliant is safe to program in, offering rudimentary garbage collection: Pliant uses
a simple pointer count system in each allocated object and free’s the memory when
the count becomes zero. So garbage is taken care of as long as memory pointers don’t
indirectly point to them selves. This memory management model falls somewhere
between low-level (C/C++) and high-level (Java, Eiffel) memory management.

Hubert Tonneau believes that current high-level memory management is inefficient
for large data allocations, so Pliant’s choice is actually a compromise. Still, because of
the modularity of Pliant, any kind of memory management model can be implemented,

4

and appear as an extension to the Pliant language itself.
Pliant is a language that can express things at high level or even at a low level.

The Pliant default extensive environment (PDEE) has useful, reusable and extensible
routines to make programs at a very high-level. And Pliant can also go quite low-level,
offering in-line assembler4 when required.

1.2.5 Pliant+SDL Considerations

Pliant has facilities for directly linking with dynamically linked libraries written in C.
SDL is written in C, so writing bindings for each of the SDL routines in Pliant is a
no-brainer. If the project would stop there, then the result would be an API identical
to the C based API of the SDL. But more work will be needed to make full use of the
benefits in the Pliant language.

When making the Pliant+SDL bindings, its important that it is designed so that
littlest possible coding is necessary to use SDL. This project could simply implement
the bindings to match exactly the C API of SDL. This however would mean that the
Pliant code would resemble its equivalent in C, offering few real advantages over using
C itself. The goal then should be to make using SDL easier through Pliant. Python’s
Pygame module may offer clues on how this can be done. Much of the project’s time
will probably spent on this problem.

Pliant’s high execution speed and simple language could make it very useful for au-
thoring multimedia applications and games. By linking Pliant with SDL, Pliant should
perform at speeds comparable to C with SDL – more so than Python with Pygame.
Also, the amount of coding required in Pliant can be significantly less than in C and
about equivalent to Python. It depends on the design of the Pliant+SDL bindings that
thesis wishes to develop.

1.3 Python Overview

Python is high-level, object-oriented programming language that is safe and easy to
use. Python easy to embed in programs, and is becoming the language of choice for
“scripting” or automating software applications. This makes Python a scripting lan-
guage. Python is also extensible using C or C++. Python is named after the bbc
sketch comedy series, “Monty Python’s Flying Circus.” Python is written by Guido
Van Rossum and the project is hosted onhttp://www.Python.org .

1.3.1 Python 2.1 Distribution

The Python2.1 distribution appears to offer a complete suite of tools to create cross-
platform software applications of any type. The distribution offers tools to write, de-
sign, compile, debug and document Python programs and offers a rich library of re-
usable classes. These include classes for making cgi scripts, server pages, system
reporting, database access and applications using graphics and GUIs.

4available through asm module

5

Python 2.1 comes with packages to access any widely used system or libraries –
more than Pliant5 currently has. These include packages such as Tkinter for making
GUI applications. Python 2.1 also come with helpful support programs such as IDLE,
a complete Python editor and integrated development environment that is written in
Python itself.

Pydoc scans Python sources and creates documentation in html format. Pydoc can
also function as an HTTP server, serving up documentation of the Python source tree
in real-time. Pydoc by default works like a man command for Python classes.

Like Pliant, Python also has classes for creating an HTTP server, but also with
support for CGI. Pydoc uses this class. Unlike Pliant however, Python doesn’t provide
a complete suite of internet services beyond HTTP and the server socket.

Another interesting packages include “freeze”, for making stand-alone Python pro-
grams without the need of the Python distribution itself. Freeze allows Python pro-
grammers to create stand-alone programs by cloning the Python interpreter, and ap-
pending it with a compressed archive of the byte-compiled program source the Python
classes it imports.

Freezing a Python program means the end-users do not have to have install a Python
distribution. This process however produces a single over-sized executable, which
doesn’t execute much faster than under the original Python environment. Though Pliant
uses a compiler, its design intentionally avoids compiling to an executable file.

Neither languages are suited for creating and distributing stand-alone applications
like C/C++ traditionally does. This “feature” that both these language share discourage
commercial developers from exploring the possible applications of these languages for
video-game and multimedia software.

1.3.2 Python Syntax

The Python syntax is white-space delimited, and as a result the structure appears some-
what similar to Pliant. This is where the similarity ends. Python has many built-in
constructs and functions. Pliant has a very basic few built-in constructs, but has more
expression operators. But because of Pliant’s extensible meta-language, it can make
itself appear even more similar to Python if desired.

Python is extensible, but only through C or C++. Pliant can extend itself using its
own language. Python requires special modules to gain low-level access. For exam-
ple, Python requires modules to perform conversions between packed c structures, to
Python strings, then back again. Pliant natively supports packed data structures and
even C prototypes. And unlike Python, Pliant can also program at the low-level as
well. This is a typical differentiation between interpreted and compiled langauges.

1.3.3 Python Interpreter

Python is an interpreted language. This means that programs are not executed as ma-
chine code and the source is a script for the interpreter program. Python is also known
as a scripting language. Python however is quite fast, especially on current commodity

5note: library bindings packages are quite trivial to write in Pliant, in comparison to Python. Also, the
Pliant distribution tries to maintain its svelte, floppy-disk size

6

hardware. Python can compile Python source to byte-code, which load much faster
than the raw source. Byte-code however is still dependant on the interpreter and is far
from being native code that Pliant can generate.

The main advantage of using an interpreter is that the language is dynamic. This
allows for dynamic data typing and data types. Python is also interactive so users
can enter Python code directly into the interpreter. For many programmers, using an
interactive mode is an easy way to learn and experiment with a new language. also,
Python programs can also further evaluate Python code. Pliant can at least perform the
latter, because of its dynamic compiler.

1.3.4 Python as a High-level Language

Python is highly successful because of its powerful, but easy to use and understand lan-
guage. Python is object-oriented, unlike Pliant. Pliant does implement some features
such as virtual or generic data types, but does not implement inheritance, which Hubert
Tonneau feels lead to unnecessary bugs6.

Beginners and novice programmers find Python very easy to learn. Python’s syntax
is quite clean and easy to understand. Python provides a safe environment for program-
mers to work in, offering full garbage collection and exception handling. This means
that programmers do not need to be as careful about low-level matters such as memory
allocation, null pointers and data types as they would if they were programming in C.
Python works the way most people who understand the language expect it to work.

Python is ideally suited as a true scripting language, being used to glue compo-
nents together, and provide overall programming. Because of Python’s object oriented
nature, it works well with components written in C++ or other object oriented lan-
guages. Python can also interestingly take components written in c or other procedural
language and apply them in an object oriented frame-work. This is whatPygamees-
sentially does for SDL.

Python is also popular for scripting on the web. Products such as zope provide
a frame-work for creating interactive web applications, portal sites and group-ware.
Cheetah, is an extension to allow Python to be used in “server pages” much like the
way PHP is being used.

Another important and popular use for Python is as a RAD (rapid application de-
velopment) tool. Using Tkinter or wxPython, Python can be used to easily and quickly
build useful full-fledged applications, featuring GUI’s, networking and database access
for example. This allows developers to prototype software ideas in shorter time cycles.
Python is also ready for making enterprise7 software as well. Python may very well
soon compete with Visual Basic.

1.3.5 Pygame: Python + SDL

Pygame is a Python module providing Python access to the SDL API/library. The
project is hosted onhttp://Pygame.org and is currently maintained by Pete Shin-
ners.

6http://Pliant.cx/Pliantdocs/babel/universal/Pliant/welcome/whatisit.html
7check http://www.activestate.com

7

Pygame makes game creation and multimedia application development easy. Pygame
works at even higher level than SDL does, supporting a subset of routines in SDL and
simplifying the rest. Pygame is almost a separate API exclusively for Python. Python
and C are very different langauges. The SDL API was designed for C programmers
in mind (though choosing C over C++ implied a desire to have bindings to other lan-
guages as well). Pygame’s API is adjusted so that it works well within the Python style.
This is really how Pygame makes development easy, by not trying to copy the C API
exactly, yet begin still familar to other SDL users.

Unfortunately, Python cannot program at the low-level and so cannot use any low-
level code beyond that Pygame makes available. The Pygame module is written in C, in
the Python API. The Python interpreter links with dynamically linked libraries through
its C interface. Pliant on the other hand directly supports low-level C libraries. This
means that the Pliant module for SDL, the basis of this proposed thesis, can be written
in Pliant’s own language. Its possible for Pliant to support every low-level routine in the
SDL, and can even use low-level code outside the SDL, for example opengl. Pygame
currently doesn’t expose bindings to opengl extensions in SDL.

1.4 Cross Platform Development

Cross platfrom development means how well programs can be made to run on different
platforms and architecutres. C has been and still is the most portable language used in
the industry.

The SDL is written in C and has been ported for all architectures running Linux,
Windows, mac os, beos, freeBSD, unix and even for console machines such as Playsta-
tion 2 and soon to support modified x-box units. This means that any game or multime-
dia program that exclusively uses the SDL library can compile and run on any platform
that SDL has been ported for. This makes SDL the best cross-platform development
tool for making high-performance multimedia and games.

Recent years however has shown a preference for more specialized, higher-level
programming languages. Much of these “modern” programming languages try to make
them selves independent of the underlaying operating system and architecture. Lan-
guages such as Java use a virtual runtime environment, perl and Python use an inter-
preter to read programs in the form of text or bytecompiled files. Pliant uses a dynamic
compiler, written in C that compiles from source .pli files into program code native to
the host system.

All of these language have interfaces that allow them to link with code native on the
host system. Java uses jni, wich links to native code through the jvm, perl and Python
use extension modules written in c, but in the API compatible to these languages. Pliant
programs executes as native code, so it easily links directly with libraries, which are
compiled in native code.

currently Python is available on almost all systems that SDL has been ported on.
This is because Python to is written in C. This works favorably for Pygame, which
fully supports Linux and Windows, as well as other systems that can host both SDL
and Python. Work on mac os and osx versions are currently underway.

Pliant is available on Windows and posix compliant systems. Pliant is written in c
and a subset of posix. Pliant requires a multi-threading environment with TCP/IP suite.

8

This is due to Pliant’s current distribution which employs a number of internet services
such as the http. This however doesn’t affect Pliant’s portability because most systems,
even Windows support a basic subset of posix, providing at least TCP/IP networking.
Pliant should have little problem working on all platforms it supports with SDL.

perhaps this may suggest an even further trimmed-down Pliant distrubition de-
signed for SDL? it would provide an even more cross platform development tool, open-
ing possibilites on platforms that do not have tcp/ip or even an os, like game consoles.

2 Objectives

the overall objective is to produce a tool for creating high-performance videogames
and multimedia applications that is easy to learn and understand, and require as little
coding as possible. Pygame reasonably meets this objective using Python, but lacks
the performance of C/C++. It is hoped that making a similar package for Pliant will
offer the simplicity and ease of use that Pygame offers, and also the performance of
C/C++ and offer possible extensions for 3d graphics with opengl. Along the way, the
project will be documented on a website, hosted by the Pliant http server and using
Pliant’s pages format. But before any of those objectives can be met, some aspects of
the aformentioned technologies will need to be studied and learned.

2.1 Learning Objectives

the proposed thesis will be undertaken with minimal knowledge and experience with
almost all involved technologies. This may mean that much of the project’s life cycle
will be spent learning the languages and APIs, and also how they interact and connect
with external elements. Not all learning objectives need to be met first, but rather met
along the way through the project cycle. Indeed, the thesis process itself is a learning
process; new learning objectives can be added or even replaced. The following defines
some of the things that may need to be learned.

2.1.1 Pliant

the Pliant language is small, but unique. Learning to write in the Pliant language can
be picked up quite quickly. But learning to take full advantage of Pliant’s features may
take considerable time. For example, its meta-programming facilites demands extra
attention. There is also the question of how well Pliant can use SDL, which is a C
library.

2.2 Pliant and C Libraries

how well Pliant links to C compiled libraries will be crucial to the success of Pli-
ant+SDL. On the surface, it appears that Pliant can directly load dynamically loaded
libraries, or DLLs. But certain questions like how does Pliant handles library depen-
dancies? for example if SDL depends onlibfoo.so.1 , does Pliant know this and
loadlibfoo.so.1 or does the calling c-library take care of it? and does this work on

9

both the Windows and Linux platform? more knowledge abouthowPliant uses DLLs
is needed.

another questions is how Pliant deals with packed data in c-structs. The SDL library
makes heavy use of structs to pass information through its routines. Pliant supports data
structures and user type definitions. Again, on the surface it appears that Pliant’s data
structures directly support C, but further study is required.

because SDL takes control of hardware directly (through available APIs), it must be
certain that Pliant will not unpredictably get in the way of SDL’s normal operation and
interaction with the underlaying hardware. Again, understanding what environment
Pliant loads DLLs and execute the contained code in is required here. Hopefully, it
will be found that Pliant programs will surrender appropriate control to SDL when
its used. Otherwise, the bindings may become more elaborate than simple function
prototypes.

there are some examples of binding modules to actual c-libraries in the Pliant 75
distribution. These files need to be examined and some test cases need to be conducted.

2.3 Pliant Modules

learning how to write Pliant modules should be easy. What needs to be learned is how
to make modules that are well designed for the Pliant language. This means that the
Pliant+SDL module must offer a wrapper API that fits well in the Pliant language.
Almost all the support files making up the PDEE are Pliant modules, so there are
pleanty of examples to follow. Notably, the graphics library contains interfaces with
Xlib. This package may offer clues on how to convert a C-style API into a useful
Pliant-style API.

2.4 Meta Programming

meta-programming is a powerful tool that Pliant uses to extend its self. Using this,
Pliant can extend its vocabulary and syntax, sometimes to the extent of making itself
appear as a new language. For example, the .page format that the Pliant http server
uses are actually Pliant programs even though they appears as if written in a different
language. Pliant offers the kind of power and flexiblity usually found in functional-
programming langauges such as lisp and scheme, for those who know how to use it.

2.5 Embedding Pliant in C apps

still today, industrial strength applications are written in C and C++. Pliant tries to re-
place c, but the reality makes apparent that Pliant will have to find a way to work inside
C. What needs to be learned is how to integrate or “embed” Pliant in a C program.

this would make Pliant+SDL useful for current game/multimedia developers. They
can create a high-performance frame-work in C/C++ and then use Pliant as a high-
level scripting language to simplify creation within the frame-work. For example a
game-engine, written in C/C++, could use Pliant as the language used to describe game
objects, levels, rules, menus, etc. Plugins and mods could also be written in Pliant.

10

Crystal Space8, a powerfull game engine for creating games with 3D graphics already
uses Python as its scripting language.

the objective here is to allow C programs to use Pliant objects by using an embed-
ded Pliant dynamic compiler. Pliant is written entirely in c, so it is very possible to do
this. How well Pliant easily lends itself to doing this needs further study.

2.6 Python Language

the Python language is an easy high-level language. Its structure and design is simple
to follow. Python 2.1 has a rich library of classes, that makes up most of Python’s
functionality. The objective is to learn how to use both the Python class library and its
built-in features together.

2.7 Python Binding to C

a learning objective is to better understand how Python uses C modules. Python bind-
ings come in the form of modules which provide Python with usable classes. but any
classes that these bindings offer cannot be subclassed. That’s because the bindings are
compiled in c, using Python’s API. This proposed thesis will examine and compare,
how well Pliant binds to C in comparison to Python. This will include sample code
from both languages.

while Python may already not offer the most optimized solution for scripting C/C++
programs, there are good reasons why its very popular for doing this. A major factor is
Python’s friendly approach to object-oriented programming. Python could in a way be
a tool to easily create object-oriented applications using standard C libraries. Python
has C++ wrappers for its C API. This means that Python can also pass and receive
messages to and from C++ objects.

Pliant doesn’t offer full object-oriented support, especially lacking class inheri-
tance. Its still theoretically possible to extend Pliant to offer full object-oriented sup-
port, but the Pliant team doesn’t appear interested in going this direction. They feel that
it leads to unnecessarily complex projects, which in turn leads to bugs. some would
argue the inverse. What this all means is that for the majority of game programmers
who perfer object-oriented programming will likely prefer Pygame over Pliant+SDL
even if it performs better.

2.8 SDL & Pygame

The SDL is a simple API as its name says. To learn the API and how to use it, some
experiments will be done in its native C language. The SDL team doesn’t pledge
official support for any other languages other than c, though it encourages efforts to
offer bindings to other languages. Learning the API, its important routines and data
structures is important. Pliant needs to know the names of the routines it will call
directly in the library. And all of the c data structures that each routine uses and returns
may need to be ported into Pliant data structures.

8More information athttp://crystal.sourceforge.net

11

Hopefully, learning all of the SDL won’t be necessary. Like Pygame, only a subset
of the higher-level routines in SDL will need to be called directly. For the proposed
thesis, the bare minimum of SDL required to write a game and a movie player will be
“exposed” to Pliant. From there, the thesis will try to match as many of the features
that Pygame exposes in SDL.

Also, Pygame will be learned. Pygame is in someways its own API wrapped around
the SDL. Pygame is designed to be even simpler than SDL and made exclusivley for
Python. Understanding the differences between the C API and Pygames will be impor-
tant when making decisions on how to adapt the C API for Pliant.

2.9 Cross Platform Support

Pygame supports development on Windows systems as well as Linux, as well as many
other. Pliant+SDL should attempt to support at least Windows and Linux. What needs
to be learned are the differences between Pliant on Windows and on Linux. Can Pliant
load DLLs as well as it can in Linux? there are differences between Windows DLLs
and Linux shared objects that may need to be understood.

Pliant is compiled under cygwin, a posix emulation layer ontop of the Win32 API.
It may be required then to compile SDL under the same environment. But if Pliant
can be compiled with native tools, such as mingw or visual C++, then maybe plian can
load Windows standard DLLs. One way to be sure is to download the Windows build
of Pliant from the project site and test it. It it doesn’t work, then the next step is to
figure how to compile Pliant without cygwin. The last thing to try if all else fails is to
compile SDL under cygwin. There might however a performance hit on SDL it it were
forced to use an emulation layer to work in Windows, but its uncertain now.

3 Project Objectives

The project’s objectives are outined below. Time is short, so some maybe even most of
these objectives may not be met. The project’s main objective howerver is to provide
the tools and framework to make all of these objectives implementable given enough
time.

For the objectives below which actually use the Pliant+SDL bindings, they will
be replicated in both Pygame, and standard C + SDL. Then simple comparisons will
be made. Each of the three versions will recieve a rating based on performance and
program code size/readability. It hoped that Pliant will have the highest ratings in most
if not all objectives.

3.1 Project Website

The project life-cycle, begins after this proposal and will be tracked on a project web-
site athttp://playground.scs.ryerson.ca:9090 . the website is hosted
on a Pliant http server at port 9090. The website will be written in Pliant’s .page for-
mat. While this aspect of Pliant is not officially being explored in this proposed thesis,
the .page format provide useful facilites for exhibiting Pliant projects. These include

12

side boxes, syntax highlighting and facilites for browsing deploying Pliant software
projects.

The website will have an open journal, covering the development of Pliant+SDL,
lessons learned, and e-mail correspondance with ryerson staff, other experienced Pli-
ant, Python, and SDL users, and project members and assitants. All deliverables, in-
cluding the official thesis paper will be made available on the website. The look and
feel of the site will be consistant with other Pliant sites, though slight changes such as
color may happen if the project takes off and define a style of its own. This is typical
of game development sites, for example the Pygame site.

The objective of the site is to be a base for all work on Pliant+SDL. The site will
be a source for all material related to the project, including source, binary packages,
documentation, thesis works and links to all other related material used from other
projects. The website will have sections dedicated for some of the objectives defined
below. Each section will track the progress of each objective. There is no set order or
time-table, beyond the overall deadline, in which the objectives need to be achieved.
Some of the objectives will be approached in an interspersed manner, the focus of work
may change as new things are being learned and as obstacles appear. The website will
help keep track of all these changes to make the whole process safe and painless.

Once the Pliant+SDL bindings prove usable, the website will host simple tutorials
on how to use them together. Hopefully, it may invite others to try and test Pliant+SDL
and perhaps support it, even after the thesis is concluded.

3.2 Pliant+SDL Bindings

The objective of the Pliant+SDL bindings is to either offer Pliant modules that help
Pliant interact with the SDL library, or offer some instruction or documentation on
how this can be done. Pliant may not require any special module to link with SDL, but
it may need some headers9 to define SDL data structures and function prototypes. This
objective is the bare minimum that this thesis wishes achieve.

Pliant+SDL bindings will try to expose SDL routines to support:

• Windowing & fullscreen graphics drawing context/canvas.

• Keyboard & mouse i/o.

• SDL event handling.

• Complete 2d drawing routines.

• Threading support.

• Timer routines.

• Digital audio.

• Bitmap & movie10 formats.

9“headers” is a C term for a file contiaining pre-declared symbols, its understood that Pliant does this
differently.

10movie playback is not supplied by SDL.

13

3.3 Portability

Portablity is more important now because of the many available platforms and archite-
cures that are being widely used. There are personal computers such as the pc clone
and apple macintosh (amiga11is hoping to make a comeback soon). And there are game
consoles such as sony Playstation 2, nintendo game cube and microsoft x-box. Game
developers often release a game accross manny of these platforms, so a cross-platform
frame work becomes useful.

like Pygame, Pliant is available on Linux and Windows. Combined with SDL, they
may offer a solution for creating prototypes or re-usable modules that can work on
many platforms with little or no modification. Pygame already has success, supporting
Windows, Linux, *BSD, MacOS x and even Playstation 2. This however is due more
to the vital support Pygame has than the porability of Python and SDL.

The objective is to examine how well Pliant+SDL programs work on both Linux
and Windows. Hopefully, the binary distributions for Pliant and SDL for Windows
will suffice since all new code will be written in Pliant. If however recompiling or
modfication of either’s sources becomes necessary, a Windows C/C++ development
package may be required. Because Pliant and SDL are free and open-source, this part of
the project will try not depend on commercial, propriatary products such as Microsoft
Visual C++. If no free tools such as Cygwin gcc or Mingw gcc offer a solution, then
Pliant+SDL will exclusively be developed for Linux.

3.4 Special FX Demos

Some special effects require computational power, aside from that required to display
graphics and generate sounds. These include particle effects, real-time physics and
morphic geometric transformations. These are examples of code that typically doesn’t
reside in standard APIs such as SDL or OpenGL.

Performance is where Pygame by design fails. The performance of these effects
depend on the execution speed of the Python interpreter. This means that complex spe-
cial effects will have slower frame-rates leading to unconsistant display and rendering.
The more work Python needs to do, the slower Pygame performs. Yet Pygame is an
ideal place to design special effects because of the simplicity of the Python language.
Pygame could be used as a prototyping tool for exploring new ideas for special effects,
before being ported into optimized C code.

Pliant+SDL aims to offer the simplicity of the Python language, with the perfo-
mance of C by nature of its dynamic compiler. To test this, a single special effects
demo will be ported onto C and SDL, Pygame and Pliant+SDL. Then some perfor-
mance benchmarks and eye-witness accounts will be recorded. Which special effect to
be used is yet unspecified. It however will ideally be simple to implement, yet intensive
computationally.

The objective is to prove that Pliant can perform a common special effect with the
performance comparable to C, and code size and simplicity comparable to Pygame.

11amiga is still alive,http://www.amiga.com

14

3.5 Pliant+SDL API

To make Pliant work with SDL doesn’t actually require any special binding module
like Pygame for Python. Pliant can make calls directly with libsdl, given the approriate
prototypes and type definitions. So the “bindings” will simply be a file listing header
information that can be included in a Pliant+SDL program.

The Pliant+SDL API will be a wrapper module designed to make using Pliant with
SDL easier. The objective is to provide an easy path to using SDL routines which
doesn’t require declaring prototypes directly in the program.

The first and most basic version of the Pliant+SDL API will simply mimick the C
SDL API, requiring all components to be initialized and registered. This would mean
that Pliant+SDL code will not be significantly smaller than if done in C.

The second version and final will look towards Pygame’s way of wrapping the
SDL. Pygame is object-oriented, so some adjustments will be made. The goal is to cut
coding size and ease to being equivalent to Pygame or better.

A third, experimental version will use Pliant’s meta-programming facilities. This
is a tertiary objective, to provide an even simpler way of using the SDL by wrapping
the SDL in an extended version of the Pliant language. The .page format is actually a
Pliant program, but it appears different then conventional PDEE programs. This is be-
cause Pliant allows programmers to customize the language to add new keywords and
constructs. The purpose is to examine what role Pilant’s meta-programming features
can play in Pliant+SDL.

3.6 Interactive Game< 500 Lines

The game itself is left unspecified. It will be a simple game with simple gameplay.
This game could be as simple as “punch the monkey” as seen on banner ads. The 500
lines is an arbitary number, which is small enough for one to study in one reading. The
point is to show that a game is possible under 500 lines with Pliant+SDL.

Some game ideas to be considered are (in order of complexity):

Punch Monkey
Simple punch the monkey game.

Darts
A level up from Punch Monkey. Player throws darts on a board. Features a
“nervous”(uncontrollable, spuratic movement) targetting system.

Astroids
Arcade classic, player’s space ship shoots astroids that break into smaller ones.
Features effects of gravity and interia. Top view, fixed playing area.

Outer Ridge
Player destroys incoming astroids. Target/Cockpit view, real-time bitmap scaling
astroids become bigger as they approach. Star field effect back-drop. Features
scrolling game field simulating a ship rotating 720 ˚ .

15

3.7 Movie Player

The movie player will be a simple mpeg viewer written in Pliant. SDL offers the
facilites for displaying moving graphics in a window, the ability to generate digitally
synthesized sounds using a sound card, and the ability to handle user interaction by
keyboard and mouse. There are many mpeg viewers such as gtv that use the SDL. But
SDL has no built-in codec for reading mpeg or any other movie file. Since writing an
mpeg library in Pliant is outside the scope of the proposed thesis, an existing mpeg
library will need to be used.

This means that yet another set of bindings for Pliant will need to be made. Depend-
ing on how difficult writting the SDL+Pliant bindings become, an attempt will be made
to provide bindings to the SMPEG library. SMPEG is an open-source project provided
by Loki software, the once preimier but now defunct developer and importer for PC
games on the Linux platform. The library is actually the blending of UC Berkeley’s
mpegplay mpeg video decoder and the SPLAY mpeg audio decoder libraries. There
are many other quality, open-source mpeg decoder libraries available such as mpeglib
and libmpeg2, but SMPEG was written specifically to for SDL. This should mean that
SMPEG should fit within the SDL API, and so combining the two in a project is made
simple. SMPEG is chosen also because Pygame uses it to support MPEG playback.

A basic mpeg player would simply setup the display context and sound mixer in
SDL then provide the apropriate hooks in SMPEG to use them. This is really just a
matter of passing the screen pointer given by SDL then passing to SMPEG, similarily
for audio. Once this is set, Pliant would simply invoke the process then totally surrender
execution to the C compiled routines. Neither Pygame nor Pliant+SDL would perform
any processing while a movie is playing.

This objective will not prove Pliant’s worth over Pygame in this respect, but rather
that Pliant can “glue” together routines from two or more libraries, using its own lan-
guage. Pygame is a module compiled in C, so its easy to link with multiple libraries
written also in C. The Pygame module likely wraps much of the process of setting up
the display and connections with SMPEG into one simple class with a few methods.
In Pliant, its expected that another set of C data structures and prototypes that are in
SMPEG will need to be imported into the Pliant language. Then only can a wrapper
module be made to make playing movies in Pliant as easy and automatic as in Pygame.

3.8 OpenGL

OpenGL is a graphics library for creating real-time 2D and 3D graphics. OpenGL is
also used a standard API for graphics accelerators. This means that programs that use
the OpenGL will be able to display and render 2D and 3D graphics fast, using the
features availible by the hardware. Many games today use either Microsoft’s Direct3D
or OpenGL.

OpenGL12 is actually owned by Silicon Graphics Inc, and despite its name the
library isn’t open-source software as specified by the Open Source Intiative13(OSI).
Another library, Mesa3D is a true open-source implementation of the OpenGL API,

12More information about OpenGL athttp://www.opengl.org
13More information about OSI athttp://www.opensource.org .

16

and is available on all platforms, especially Linux. So while Mesa3D is the actual
graphics library, the term OpenGL refers to the API it implements.

SDL has built-in support for OpenGL. For example, SDL has a bit-flag that can
be set upon initializing the screen. This makes and registers a device context with
OpenGL. Then like in the GLUT (OpenGL Utility Toolkit), all gl* functions will begin
to use and draw onto the SDL screen. This makes using OpenGL with SDL painless
because SDL takes care of all the intialization, windowing and clean-up.

Pygame currently doesn’t directly support OpenGL. Python does have bindings to
OpenGL through another module called PyOpenGL. While PyOpenGL works and is
actively being developed, only few applications have been made of it. And there has
been even fewer that used Pygame and PyOpenGL together. Also, mailing-lists suggest
that this combination doesn’t quite work well.

Pliant however may have fewer problems combining with SDL and OpenGL. Be-
cause of Pliant’s close intimacy with C, it may be possible to link SDL and OpenGL
the same way C does. Pliant can use SDL and OpenGL because they both are DLLs.
The objective is then to be able to easily make OpenGL available in Pliant+SDL.

If this is succesful, then it will proceed with performance comparisons with C. Its
expected that while C will still be faster, but not significantly more than in Pliant. The
test will consist of a rotating 3d object, and some geometric transformations imple-
mented both in C and Pliant.

4 Requirements

The requirements for this thesis will try to make use of free software and already
aquired hardware. This thesis should cost only in terms of time and not money14.

4.1 Software

Linux
Linux, any distribution with X11R6 will be used as the main development envi-
ronment.

Windows
Windows 9x/NT/2K/XP to test portability in Windows. All software should be
able compile on both platforms.

GCC 2.95.4
For compiling SDL, Pliant and Python. Windows version of GCC available in
Cygwin or Mingw.

Python 2.1
Python 2.1 distribution for both Linux and Windows.

Pliant 75
Pliant 75 or later. For both Linux and Windows.

14The busineses arguement that time ismoney does not apply here, this project is not for profit.

17

SDL 1.2
SDL 1.2 libraries and include files, compiled from source distribution on both
Linux and Windows.

OpenGL OpenGL libraries are often provided by graphics accelerator manufactures.
Windows systems come with software implementations of OpenGL. On linux,
Mesa3d can be used if there are no other OpenGL libraries available.

4.2 Hardware

There is currently one home machine, which meets the requirements and will suffice.
Ideally, there would be one system to do research on, and another to develop. Software
development isn’t typically dangerous to a system but its usually a good idea. Bugs
in software can cause machines to crash or hang. A second system is also useful as a
back-up system. The basic hardware requirement for for Pliant+SDL is a soundcard
and a 3D graphics accelerator. Below is an example of a suitable thesis machine along
with cost15, should one be considred for this project.

This machine is based around AMD’s architecture because its a more affordable
substitue for Intel. This machine is assembled from seperate parts and is an affordable
configuration that meets the requirments well. Also, its designed to be silent as possi-
ble. Current computers often make excessive noise and can become distracting while
working.

Part Description Cost
CPU AMD Athlon XP 1800 Mhz $139.00
Heat Sink Zalman “Flower” Silent Cooler (20dBA!) $74.00
RAM 256 133Mhz SDRAM $49.00
Mainboard ASUS A7S333 Socket A SiS745 (ATX) $99.00
Video ASUS v8170DDR GeForce4 440MX 64MB (no fan!) $139.00
Sound SoundBlaster Live Value 5.1 (OEM) $49.99
HDD 40 GB Western Digital Ulta-100 7200RPM $119.00
FDD Panasonic 3.5 floppy drive $19.99
CD-ROM Sony 52X CD-ROM Drive (OEM) $44.99
Case Enlight Mid-tower w/ 7 bays. $59.99
Power Quietpc.ca ATX Ultra-Quiet PSU 300W (26.4dBA) $128.00
Keyboard 104 Keyboard PS/2 $19.99
Mouse Logitech Optical Wheel Mouse (OEM) $29.99
Speakers Generic 120W Stereo Speakers $9.99

Total: $982.92
Monitor Viewsonic P75F 17inch Flat Screen Monitor. $339.99

With Monitor: $1322.91

15Prices based on current prices as found on the internet.

18

5 Expected Results

Ultimately, C/C++ is expected to be the performance leader. C is as low-level as high-
level programming languages come. Years of implementation prove that C translates
well into optimized assembler. C/C++ will likely continue to be the defacto standard
for programming, high-performance or otherwise.

Python with Pygame is expected to give the least amount of performance. Python
uses an interpreter, and its theoretically impossible for it to match compiled code.
Python’s power lies not in its speed, but its flexiblity and ease of use. Infact, its ex-
pected that Pygame will be better designed and easier to use than Pliant+SDL. Pygame
has undergone more than a year of development and has a large following of contribu-
tors. Also, Python’s object-oriented features make program organization conceptually
easier.

Its expected, or rather its hoped that Pliant+SDL will prove to be a worthy com-
primise of performance and ease of use. Pliant+SDL programs will have a long initial
phase before actually executing. Once compiled, Pliant+SDL programs are expected
to perform much faster than Pygame. Pygame may in some or most cases approach
performance levels of C. Also with precompiling, Pliant+SDL programs may load sig-
nificantly faster.

6 Conclusion

This project’s purpose is to study and examine the possibities of using Pliant in videogames
and multimedia applications. Its purpose is to develop any required bindings, proto-
types and documentation to provide or demonstrate how Pliant can access functions in
the SDL library. The result is Pliant+SDL and it will model its API to match the ease
of use that Pygame offers.

Some objectives include making special effect demos, a small game and movie
player. Comparisons with C and Pygame will be made along side the study. Pli-
ant+SDL will also be tested on both Linux and Windows platforms, to study its ability
to cross-platform.

Its expected that Pliant+SDL will offer programmers the ease of Pygame, with the
performance of C. And its hoped that this thesis and Pliant+SDL can offer ideas for
making better tools for prototyping high-performance video games and multimedia
applications.

19

